YAG Capsulotomy
Aaron McNulty, OD, FAAO
Louisville Eye Center
Louisville, KY

Disclosure statement
Nothing to disclose

Course Outline
- Brief overview of laser tissue interactions
- Posterior capsular opacification (PCO)
- Overview of YAG laser
- Capsulotomy indications/contraindications
- Preoperative preparation
- Capsulotomy techniques
- Postoperative management
- Risks and complications

Mrs. B
- Chief complaint “blurry vision”
- 20/50 BCVA OD, OS
- Posterior segment unremarkable

Mrs. B
- “Why did I have this complication? Did the surgeon mess up?”
- “Why did you send me to a quack surgeon?”
Mrs. B

- “Is this procedure safe? What's the risk of complication? Can I go blind?”

Mrs. B

- “Is my insurance going to cover this?”
- “I have a high deductible. What's this going to cost me?”

Mrs. B

- “What if I decide to wait? Is there harm in waiting? Does the procedure become more difficult or risky?”

Laser Characteristics

- Certain laser characteristics make them useful medically
 - Single Wavelength
 - Low divergence
 - Energized
 - Focused
 - Controlled

Laser Variables that Influence Interactions

- Wavelength
- Spot size
- Pulse duration

- Laser variables interact to determine characteristics of energy delivered to the eye

Laser Variables that Influence Interactions

- Wavelength
 - Determines which pigment/tissue will absorb energy
 - In general, longer wavelengths penetrate deeper
 - Ultraviolet: cornea (excimer 193um)
 - Green/yellow/red lasers: retina
Laser Variables that Influence Interactions

- Wavelength
 - Infrared (longer wavelengths)
 - Photodisruption
 - Nd:YAG

- Spot size
 - Smaller spot size has a greater energy density

- Spot size
 - YAG and SLT: fixed spot sizes
 - Laser lens: optional in YAG procedures
 - Tightens the spot size
 - Effectively increases energy density

- Pulse duration
 - Short pulses (.02 - .05sec): photovaporization or photodisruption
 - Longer pulses (.1 - .2 sec): photocoagulation
Transparency and pathology
- Corneal pathology can affect transparency
- Scars, edema, infiltrates make cornea opaque
- Cornea absorbs more laser energy and may cause corneal burn

Pigmentation
- Some lasers are dependent upon pigment for their effect (Argon)
- Some lasers are pigment independent (YAG)

Tissue Variables That Influence Interactions

Specific Laser-Tissue Interactions

- Transparency
- Tissue transparency depends on wavelength
- Healthy ocular media is transparent to 400nm (blue) to 700nm (red)

- Pigment
- Some lasers are dependent upon pigment for their effect (Argon)
- Some lasers are pigment independent (YAG)

- Water Content

- Pathology in the aqueous can also affect transparency
- Cell/flare, hyphema
- Increased absorption of laser energy
- Increased complications
Photodisruption

- Pigment independent
- High energy, small spot size, brief pulse duration
 - Extremely high energy density
- 15,000°C increase
- Optical breakdown: laser energy reduces tissue to plasma
- Molecules are stripped of electrons

Photodisruption

- Produces small explosion
 - Hydrodynamic waves and acoustic pulses travel back toward the surgeon
 - These shockwaves disrupt tissue
- Therefore, the focal point must be posterior to the target tissue

Figure 3-6 Posterior YAG offset

![Figure showing beam positions](image)

- Treatment beam positions at different dial settings
 - MIN, +150, +250
- Aiming beam 1
- Aiming beam 2
- Focal plane

Note that distances shown reflect measurements in air.

Posterior Capsular Opacification

- **Pathophysiology**
 - Anterior capsulorrhexis in cataract surgery
 - Residual lens epithelial cells proliferate
- **Prevalence**
 - 3-50% 5 years postoperatively
 - Higher in young patients
 - Arises months-years postoperatively

Posterior Capsular Opacification

- **Signs**
 - Translucent or opacified film behind IOL
 - Elschnig’s Pearls
 - Vesicles with/without turbid fluid inside
- **Symptoms**
 - Similar to cataract
 - Blur, glare, decreased contrast sensitivity
Nd:YAG Laser
- Developed in early 1980’s
- Photodisruptive laser
 - Pigment independent
 - 1064nm near infrared
- High energy, small spot, brief duration (very concentrated)
 - Localized temperature increase of 15,000°C

Nd:YAG Laser
- Produces explosion and acoustic shockwaves
 - Shockwaves break through tissue
 - Shockwaves are directed back toward the doctor
 - Therefore focus of laser (explosion) must be just posterior to the capsule

Capsulotomy Indications
- PCO must interfere with activities of daily living (ADL) and quality of life
- May be considered if PCO critically interferes with visualization of retina
- Needed earlier in eyes with multifocal IOL
 - Multifocal IOLs cause decreased contrast sensitivity
 - Exacerbated by mild PCO

Capsulotomy Contraindications
- Active uveitis
- Corneal pathology/opacity
- Macular edema
- Retinal disease
 - Consider retinal consult/clearance
Preoperative Exam
- BCVA, glare test, pinhole
- IOP
- Slit lamp
- Dilated fundus exam
- Rule out other causes for decreased vision

Preoperative Preparation
- Note size/shape of undilated pupil
 - Just large enough to avoid glare
- Dilate pupil
- Topical anesthetic
 - Brimonidine or apraclonidine
 - Reduces IOP spike risk

Capsulotomy Techniques
- Laser settings
 - Initial energy ~1mJ
 - Offset: 250-350um posterior
 - Fixed spot size, duration
 - Focus carefully on posterior capsule
 - Avoid IOL and anterior hyaloid face

Capsulotomy Techniques
- Laser lens
 - Magnifies target tissue
 - Stabilizes eye and lids
 - Decreases spot size (concentrates energy)
 - Decreases acoustic propagation into eye
 - Downside: uncomfortable for patient

Capsulotomy Techniques
- Fire initial shot
 - If no tissue response, refocus and repeat
 - If still no response, increase energy by 0.3-0.5mJ
 - Each shot creates small localized break
 - Aim shots such that each break is continuous with the previous one

Capsulotomy Techniques
- Various shape approaches
Capsulotomy Techniques

Capsulotomy and Crystalens

- Capsulotomy may spontaneously enlarge with lens translation
 - Increases risk of IOL dislocation
- Recommendations
 - Maximum 4mm diameter
 - Avoid acute edges
 - Circular or octagonal approach

Capsulotomy and Crystalens

- Z Syndrome
 - Rarely occurs after Crystalens implantation
 - Capsular contraction causes “Z” configuration
 - Capsulotomy may improve or complicate the situation

Postoperative Management

- Immediate postop brimonidine or apraclonidine
- Check IOP in 1 hour
- Prednisolone acetate QID x 1 week
 - Recent literature questions this
 - Postop visits in 1 week and 1 month

Postoperative Management

- Postop visits
 - Acuity
 - IOP
 - Slit lamp
 - Dilate at one month
Capsulotomy techniques

- Techniques are largely based on practitioner preference
- How to determine best practices?

Capsulotomy techniques

- 2011 survey of British ophthalmologists
 - 300 surveyed, 158 replied
- Use of dilating drops, capsulotomy shape/size, use of contact lens, steroid use, follow-up schedule

Capsulotomy techniques

- Dilation
 - 98.5% dilate before capsulotomy
- Size
 - 64% aim for size larger than undilated pupil
- Shape
 - 47% cruciate, 27% circular, 24% combination
- Use of contact lens
 - 88% use one

Capsulotomy techniques

- Topical steroid use
 - 42% use postoperative prophylactic steroids
- Postoperative follow-up
 - 39% see patients for routine postoperative visits
 - Mostly within one month

Risks & Complications

- IOP Spike
 - Most common complication that requires treatment
 - FDA cohort of 213 patients
 - 39% had IOP spike (>5mmHg) 1-6 hrs postop
 - None treated with prophylactic hypotensives
 - Prospective randomized trial (1988)
 - Pre- and postop apraclonidine vs placebo
 - Placebo tended to spike 3 hrs postop
 - Apraclonidine group had lower postop IOP

Risks & Complications

- Iritis
 - Incidence 1-2%
 - Despite low rate, postop steroids are commonly used
 - Prednisolone acetate QID x 1 wk
Risks & Complications

- Cystoid macular edema
- Retinal detachment
 - May occur weeks to years after capsulotomy
 - Risk factors: axial myopia, pre-existing vitreoretinal disease, male gender, young age, vitreous prolapse, spontaneous extension of capsulotomy
- IOL displacement
- IOL damage (lens pits)
 - Most common complication in FDA cohort of 2110 patients
 - Visually inconsequential (usually)

IOL Pits

- Consider increasing posterior offset

A note on vitreous prolapse

- Prolapse of vitreous humor into anterior chamber is possible if capsulotomy done improperly
YAG capsulotomy complications

- How do we minimize complications?
- Does higher energy per pulse cause more complications? What about cumulative energy?

2015 YAG complication study

- 2015 study
- 474 consecutive eyes
- Analyzed factors that led to complications

Conclusion: Total laser energy is an important factor leading to complications
2015 YAG complication study

<table>
<thead>
<tr>
<th>Complication</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uveitis</td>
<td>9.9%</td>
</tr>
<tr>
<td>IOP spike</td>
<td>12.6%</td>
</tr>
<tr>
<td>IOL pitting</td>
<td>7.8%</td>
</tr>
<tr>
<td>Cystoid macular edema</td>
<td>2.9%</td>
</tr>
<tr>
<td>Retinal detachment</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complication</th>
<th>Mean total energy with complication (mJ)</th>
<th>Mean total energy without complication (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uveitis</td>
<td>65</td>
<td>42</td>
</tr>
<tr>
<td>IOP spike</td>
<td>76</td>
<td>42</td>
</tr>
<tr>
<td>IOL pitting</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>Cystoid macular edema</td>
<td>71</td>
<td>42</td>
</tr>
<tr>
<td>Retinal detachment</td>
<td>78</td>
<td>43</td>
</tr>
<tr>
<td>Overall average</td>
<td>66</td>
<td>37</td>
</tr>
</tbody>
</table>

2015 YAG complication study

- Retinal detachment: a closer look
- 11 RDs in 474 eyes (2.3%)
- Mean onset 11.7 months post YAG
 - Range 4-15 months
- Risk factors
 - Higher total laser energy
 - Higher axial length
- Recommendation: avoid large capsulotomy in patients with high axial length

2015 YAG complication study

Mean energy level by PCO subtype

- Pearl: 1.8mJ starting energy; 22mJ total
- Fibrous: 2.8mJ starting energy; 65mJ total

Capsulotomy pearls

- Patient education
 - Expect bright flashes of light and “pops” of sound
- Lens glare and obtaining clear image
 - Practice with gonioscopy
- Localized fibrosis
 - “Curve” your treatment to avoid localized dense fibrosis
Maximizing shot efficiency

Billing & Coding
- CPT 66821
- 90-day global period
- $332 per eye ($314 if done in ASC)
 - Be aware of ASC fees
 - Generally separate eyes by 1 week

Video examples

Mrs. B
- “Why did I have this complication? Did the surgeon mess up?”
- “Why did you send me to a quack surgeon?”

Mrs. B
- “Is this procedure safe? What’s the risk of complication? Can I go blind?”
Mrs. B

- “Is my insurance going to cover this?”
- “I have a high deductible. What’s this going to cost me?”

Mrs. B

- “What if I decide to wait? Is there harm in waiting? Does the procedure become more difficult or risky?”

Questions?

Thank you!

mcnulty.aaron@gmail.com